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ABSTRACT.—An isolated supraoccipital from the late Miocene of Chiapas, southern Mexico, can be referred to Caimaninae, a group including

the living caimans and their closest extinct relatives. The specimen shares a polygonal shape, indicating lateral contact with the squamosals,

with extant Caiman and Melanosuchus, but some extinct caimanine lineages had a similar morphology. This is the northernmost known

caimanine occurrence during the Neogene, suggesting that members of this salt-intolerant lineage were present in North America possibly
before the Isthmus of Panama was complete. It might also indicate that extant lineages within Caiman, including those found in Mesoamerica

today, were distinct earlier than generally believed.

All of the six recognized species of caimanine alligatorid are
found in South America, but one—the Spectacled or Common
Caiman, Caiman crocodilus Linnaeus 1758—has a range extend-
ing into North America (Velasco and Ayarzagüena, 2010;
Escobedo-Galván et al., 2011). At first, this seems be a simple
case of northward range expansion during the Great American
Biotic Interchange (GABI) following closure of the Isthmus of
Panama within the past 5 million years (Estes and Báez, 1985;
Vanzolini and Heyer, 1985). Divergence points among extant
caimanines, including the root, involve South American
lineages (Norell, 1988; Gatesy et al., 1993, 2003; Brochu, 1999,
2011; Bona, 2007; Oaks, 2011) and, because alligatorids are less
tolerant of salt water than are crocodylids (Taplin et al., 1982;
Taplin and Grigg, 1989; Jackson et al., 1996; Pidcock et al., 1997;
Leslie and Taplin, 2001), land-based dispersal routes seem more
likely. Molecular divergence estimates between the subspecies
found in Mesoamerica (Caiman crocodilus fuscus, brown caiman)
from northernmost South America north to Nicaragua, Caiman
crocodilus chiapasius, spectacled caiman) in El Salvador, Guate-
mala, and southernmost Mexico) and populations in the
Amazon Basin are broadly consistent with dispersal that is
roughly contemporaneous with the GABI (Venegas-Anaya et al.,
2008).

We describe a caimanine supraoccipital from the late Miocene
Puente Ixcán locality in Chiapas, southern Mexico (Fig. 1). This
is the northernmost known occurrence of the lineage during the
Neogene, demonstrating that derived caimanines were present
in North America two or more million years before the GABI.
This, in turn, further reflects a complex biogeographic history,
with marine barrier crossings not evident from living species
alone.

METHODS AND MATERIALS

Institutional Abbreviations.—FMNH, Field Museum of Natural
History, Chicago, IL; IHNFG, Instituto de Historia Natural, Fósil
Geográfico, Tuxtla Gutiérrez, Chiapas.

Crocodylia Gmelin, 1789 (sensu Benton and Clark, 1988)
Alligatoridae Gray, 1844 (sensu Norell et al., 1994)
Caimaninae Brochu, 1999 (following Norell, 1988)

(Figure 2)

Referred Material.—IHNFG 4737, complete supraoccipital.

Occurrence.—Late Miocene, Puente Ixcán, Ocosingo Munici-

pality, Chiapas, Mexico. Vertebrate remains from the locality

were collected from an unnamed sedimentary sequence com-

prised of silty sandstones thought to have been deposited in a

coastal lagoon or overbank deposits. Other vertebrate remains

include stingrays, trionychid and dermetemydid turtles, an

anchitheriine horse, and the hippopotamus-like rhinocerotid

Teleoceras hicksi. Additional crocodyliform remains include

procoelous vertebrae and teeth previously referred tentatively

to Crocodylus (Carbot-Chanona, 2008). The anchitheriine and

rhinocerotid strongly suggest a pre-Pliocene age for the deposits,

and T. hicksi in particular suggests a latest Miocene (Hemphillian)

age (Carbot-Chanona, 2011).

Description.—The specimen is a mediolaterally elongate poly-

gon with a pitted planar surface in dorsal view (Fig. 2A). The

lateral squamosal sutural surfaces intersect the posterior margin

of the skull table at right angles. The parietal sutural surfaces

intersect the squamosal surfaces—and each other—at roughly 458

angles. A midsagittal crest divides the occipital surface ventral to

the skull table into a pair of concavities (Fig. 2B). Sutural surfaces

for the exoccipitals can be seen ventrolaterally (Fig. 2C,D). The

posterodorsal roof of the endocranial cavity is preserved on the

anteroventral surface (Fig. 2C).

FIG. 1. Map of southern Mexico showing location of the Puente Ixcán
locality.

2Corresponding Author. E-mail: chris-brochu@uiowa.edu
DOI: 10.1670/13-134



DISCUSSION

Phylogenetic Position.—Although limited to a supraoccipital, the
specimen preserves morphology diagnostic of several caimanine
lineages, including extant Caiman. The supraoccipital is visible
dorsally on the skull table in most crocodylians but, in all
caimanines with sufficiently preserved cranial material, dorsal
expression of the supraoccipital is expanded. In some basal
forms, such as Paleosuchus (Fig. 3A) and Tsoabichi, the dorsal
supraoccipital exposure is triangular and, as with most crocodyli-
forms, bound laterally by the parietal. In others, including
members of Jacarea (the last common ancestor of Caiman
crocodilus, Caiman yacare, Caiman latirostris, and Melanosuchus
niger and all of its descendents), the supraoccipital has an even
larger presence on the skull table and blocks the parietal from the
posterior skull table margin (Norell, 1988; Brochu, 1999, 2010).
The shape of the supraoccipital varies within living jacarean
species, but the anterior margin is usually linear and perpendic-
ular to the sagittal plane. In some cases, the lateral margins are
oriented anteromedially, giving the supraoccipital a trapezoidal
shape. In others, the parietal bears a pair of short triangular
posterior processes that extend along the anterolateral margins of
the supraoccipital (Fig. 3B). This results in a polygonal shape
similar to that seen on IHNFG 4737. Polygonal supraoccipitals
only occur when the parietal is excluded from the posterior skull
table surface.

Among members of Jacarea, IHNFG 4737 most closely
approximates the supraoccipitals of living Caiman crocodilus, C.
yacare (yacare caiman), and C. latirostris (broad-snouted cai-
man). In Caiman lutescens and Caiman gasparinae from the late
Miocene of Argentina (Bona et al., 2013b), the posterior margin
of the skull table is more-deeply concave in dorsal view, and the
posterior edge of the supraoccipital is not as linear as in IHNFG
4737. The same is usually, though not always, true for modern
Melanosuchus niger—black caiman (Brochu, pers. obs.). Caiman
niteroiensis from the late Miocene of Brazil bears a pair of
squamosal ‘‘horns’’ that would have imparted a concave dorsal
surface to the supraoccipital (Riff et al., 2010:fig. 16.4).

Some non-jacarean fossils share a similar configuration of the
skull table elements, including Centenariosuchus gilmorei from
the early-middle Miocene of Panama and the bizarre, gigantic
Miocene caimanines Mourasuchus and Purussaurus. The supra-
occipital of C. gilmorei is very similar to IHNFG 4737 (Hastings
et al., 2013; Surname, pers. obs.). The supraoccipital is much

narrower in dorsal view in Mourasuchus, and it sits in a furrow

within a greatly expanded skull table posterior to the supra-

temporal fenestrae, giving the element a sagittally convex and

frontally concave dorsal surface (Price, 1964; Bocquentin and

Souza Filho, 1990; Bona et al., 2013a; Scheyer et al., 2013). The

supraoccipital in Purussaurus has a dorsal outline similar to that

of IHNFG 4737, but it does not contact the squamosals and the

posterior margin is markedly concave (Langston, 1965; Boc-

quentin et al., 1989; Brochu, 1999; Aguilera et al., 2006).

Enlarged supraoccipitals are also sometimes seen in non-

caimanine crocodylians. The best-known example is the Late

Cretaceous globidontan alligatoroid Brachychampsa from west-

ern North America in which the supraoccipital is large and

trapezoidal. The supraoccipital in Brachychampsa, however, does

not contact the squamosals (Norell et al., 1994). The polygonal

condition seen in IHNFG 4737 is only found in caimanines in

which the supraoccipital contacts the squamosals.

The distribution of supraoccipital-squamosal contact among

caimanines is complex. Some analyses (e.g., Brochu, 1999, 2010,

2011) considered the basal Patagonian caimanine Eocaiman

cavernensis to have this condition, but the supraoccipital is not

preserved on the holotype (Simpson, 1933), and other analyses

have left this character state uncoded for the species (e.g.,

Scheyer et al., 2013). Two newly-described basal caimanines,

Globidentosuchus brachyrostris from the late Miocene of Venezu-

ela (Scheyer et al. 2013) and Culebrasuchus mesoamericanus from

the early Miocene of Panama (Hastings et al., 2013), have both

been reconstructed as having a jacarean-like supraoccipital. The

supraoccipital of Globidentosuchus does, indeed, resemble that of

extant Caiman and Melanosuchus, but that of Culebrasuchus

appears to have had an acute anterior margin different from

that of IHNFG 4737 and more similar to that of Paleosuchus.

FIG. 2. IHNFG 4737, Caimaninae, late Miocene, Chiapas.
Supraoccipital in dorsal (A), posterior (B), ventral (C), and right lateral
(D) view. Scale bar = 1 cm. Abbreviations: ecc, roof of endocranial
cavity; msc, mid-sagittal crest; seo, sutural surface for exoccipital; sp,
sutural surface for parietal; ssq, sutural surface for squamosal.

FIG. 3. Morphology of the skull table in extant caimanines. (A)
FMNH 69871, Paleosuchus trigonatus (smooth-fronted caiman). (B)
FMNH 73739, Caiman crocodilus fuscus. Suture lines emphasized. Scale
bar = 1 cm. Abbreviations: f, frontal; pa, parietal; po, postorbital; soc,
supraoccipital; sq, squamosal; stf, supratemporal fenestra.
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Because the caimanine fossil record is so uneven, there is
reason to be skeptical that these new Miocene caimanines are
basal to the group. A few poorly-known caimanines have been
found in Paleocene and early Eocene deposits (Simpson, 1937;
Bona, 2007; Pinheiro et al., 2013), some of which are incomplete
enough to render the base of the group highly labile (Brochu,
2011). Almost nothing is known about the group during the
later Eocene and Oligocene. By the time observed caimanine
diversity picks up again in the Miocene, the group includes
some of the most-highly derived crocodyliforms ever found
(Langston, 1965; Riff et al., 2010; Scheyer and Moreno-Bernal,
2010; Bona et al., 2013a,b). Character state polarity assessment is
hazardous under these circumstances.

Depending on how polytomies are resolved and the status of
the supraoccipital is coded in key taxa (such as Eocaiman), the
morphology seen in Jacarea could either be plesiomorphic for
Caimaninae or something that arose two or more times (Brochu,
2010). This makes it impossible to refer IHNFG 4737 to any
particular caimanine lineage. We can, however, refer it to
Caimaninae.

Biogeographic Implications.—IHNFG 4737 is the northernmost
Neogene caimanine and the only known North American
occurrence for the group in the late Miocene. It predates the
GABI, as classically understood, which began at around 3 million
years ago (Ma) (e.g., Webb, 1976, 2006; Woodburne, 2010). At
first, this seems puzzling; alligatorids are believed to be salt
intolerant, and the GABI was thought to correspond with final
closure of the Isthmus of Panama.

In fact, the biogeographic simplicity indicated by extant
caimanines overprints historical complexity. In addition to the
early Miocene Panamanian fossils, caimanines are known from
the Eocene of North America (Busbey, 1989; Westgate, 1989;
Brochu, 1999, 2010). Phylogenetic analyses reject a close
relationship between the North American forms, and simple
vicariance or single-dispersal models are insufficient to explain
the data. Multiple crossings of the seaway separating North and
South America must have occurred. Modern alligatorids are
found periodically in estuarine and coastal areas (Grigg et al.,
1998; Elsey, 2005; Mazzotti et al., 2009; Nifong et al., 2014) and
are prone to long-distance, storm-driven dispersal along coastal
regions (Elsey and Aldrich, 2009). These facts suggest physio-
logical limits but do not preclude the possibility of the animals
crossing marine barriers.

There is also geological evidence that the straits dividing the
Isthmus of Panama may have been narrower and shallower by
the Miocene than previously believed (e.g., Farris et al., 2011;
Montes et al., 2012). The likelihood that a salt-intolerant
freshwater animal will cross a marine barrier presumably
increases as barrier width and depth decrease. This, in addition
to fossil and molecular phylogenetic evidence for faunal and
floral exchange prior to 3 Ma (e.g., Flynn et al., 2005; Cody et al.,
2010; Woodburne, 2010; Head et al., 2012; Bacon et al., 2013),
diminishes the surprise we might express over the presence of a
caimanine in southern Mexico before the Pliocene.

Depending on its taxonomic affinity, though, IHNFG 4737
might be of relevance to the origins of modern Mesoamerican
caimanine populations. Divergence time estimates based on
mitochondrial data put the split between northern subspecies of
C. crocodilus (C. c. fuscus and C. c. chiapasius) from their southern
conspecifics in the late Miocene (5.7–6.7 Ma) and between C. c.
fuscus and C. c. chiapasius in the Plio-Pleistocene (2.5–2.9 Ma).
This led Venegas-Anaya et al. (2008) to conclude that

Mesoamerican C. crocodilus arrived during the GABI and
subsequently diversified.

Given its age, geographic location, and morphology, it is
tempting to refer IHNFG 4737 to C. crocodilus, which would put
the species in Mesoamerica before the GABI and prior to the
arrival predicted by mitochondrial data. This is consistent with
other fossil evidence showing that closely-related extant
lineages within Caiman have been distinct longer than molecular
data suggest; Oaks (2011), for example, put the divergence
between C. crocodilus and C. yacare (which is sometimes treated
as a subspecies of C. crocodilus) in the Quaternary, but fossils
referable to C. yacare or a close extinct relative are known from
the Miocene (Fortier et al., 2009; Bona et al., 2013b). Earlier
divergences reinforce the notion that Mesoamerican C. crocodi-
lus—all of which are under considerable pressure from habitat
loss and hunting—are units of diversity worthy of conservation
(Amato and Gatesy, 1994; Venegas-Anaya et al., 2008; Escobedo
et al., 2011).

IHNFG 4737 is too incomplete to exclude other possibilities. It
could, for example, come from an extinct lineage present in
Mexico prior to the arrival of C. crocodilus. Regardless, this fossil
shows that caimanines lived in southern Mexico earlier than we
previously believed. Future work in this region will likely
uncover more material that will shed light on the historical
biogeography of Mesoamerican alligatorids during a time of
great climatic, tectonic, and sea level changes.
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